Calculus A for Economics

Solutions to Exercise Number 6

1) a)

$$
f^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{f(-1+h)-f(-1)}{h}=\lim _{h \rightarrow 0} \frac{(3(-1+h)+5)-(3(-1)+5)}{h}=\lim _{h \rightarrow 0} \frac{3 h}{h}=3
$$

b)

$$
\begin{gathered}
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\lim _{h \rightarrow 0} \frac{\left(x_{0}+h-1\right)^{2}-\left(x_{0}-1\right)^{2}}{h}= \\
=\lim _{h \rightarrow 0} \frac{h\left(2 x_{0}-2+h\right)}{h}=2\left(x_{0}-1\right)
\end{gathered}
$$

c)

$$
\begin{gathered}
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{x_{0}+h-1}}-\frac{1}{\sqrt{x_{0}-1}}}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x_{0}-1}-\sqrt{x_{0}+h-1}}{h \sqrt{x_{0}-1} \sqrt{x_{0}+h-1}}= \\
=\lim _{h \rightarrow 0} \frac{\left(\sqrt{x_{0}-1}-\sqrt{x_{0}+h-1}\right)\left(\sqrt{x_{0}-1}+\sqrt{x_{0}+h-1}\right)}{h\left(\sqrt{x_{0}-1} \sqrt{x_{0}+h-1}\right)\left(\sqrt{x_{0}-1}+\sqrt{x_{0}+h-1}\right)}= \\
=\lim _{h \rightarrow 0} \frac{x_{0}-1-x_{0}-h+1}{h\left(\sqrt{x_{0}-1} \sqrt{x_{0}+h-1}\right)\left(\sqrt{x_{0}-1}+\sqrt{x_{0}+h-1}\right)}= \\
=\lim _{h \rightarrow 0} \frac{-1}{\left(\sqrt{x_{0}-1} \sqrt{x_{0}+h-1}\right)\left(\sqrt{x_{0}-1}+\sqrt{x_{0}+h-1}\right)}=-\frac{1}{2(x-1) \sqrt{x-1}}=-\frac{1}{\sqrt[3]{(x-1)^{2}}}
\end{gathered}
$$

2) a) We have

$$
f(x)=|2 x-5|= \begin{cases}2 x-5, & x \geq \frac{5}{2} \\ -(2 x-5), & x<\frac{5}{2}\end{cases}
$$

It is clear that $f(x)$ is differentiable for all $x \neq \frac{5}{2}$. To check $x=\frac{5}{2}$ we compute the two one side derivatives. First $\lim _{h \rightarrow 0^{+}} \frac{f\left(\frac{5}{2}+h\right)-f\left(\frac{5}{2}\right)}{h}=\lim _{h \rightarrow 0^{+}} \frac{2 h-0}{h}=2$ where the first equality follows from the fact that when $h>0$ then $\frac{5}{2}+h>\frac{5}{2}$ and hence $f\left(\frac{5}{2}+h\right)=2\left(\frac{5}{2}+h\right)-5=2 h$. Similarly, $\lim _{h \rightarrow 0^{-}} \frac{f\left(\frac{5}{2}+h\right)-f\left(\frac{5}{2}\right)}{h}=\lim _{h \rightarrow 0^{-}} \frac{-2 h-0}{h}=-2$. From this we deduce that the two side derivatives are not equal and hence $f(x)$ is not differentiable at $x=\frac{5}{2}$.
b) The function $f(x)$ is defined for all $x \geq-1$. When $x>-1$, we have
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h+1}-\sqrt{x+1}}{h}=\lim _{h \rightarrow 0} \frac{(\sqrt{x+h+1}-\sqrt{x+1})(\sqrt{x+h+1}+\sqrt{x+1})}{h(\sqrt{x+h+1}+\sqrt{x+1})}=$ $\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h+1}+\sqrt{x+1}}=\frac{1}{2 \sqrt{x+1}}$. At the point $x=-1$ we can check if $f(x)$ is differentiable from the right. To do that we compute $\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(h)}{h}=\lim _{h \rightarrow 0^{+}} \frac{\sqrt{h}-0}{h}=\lim _{h \rightarrow 0^{+}} \frac{1}{\sqrt{h}}$ and this limit does not exists. Thus $f(x)$ is not differentiable from the right at $x=-1$.
3) We have $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{g(x)-g(0)}$. This follows from the fact that $f(0)=$ $g(0)=0$. Hence, multiplying and dividing by $\frac{1}{x}$, when $x \neq 0$, we get $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=$ $\lim _{x \rightarrow 0} \frac{\frac{f(0+x)-f(0)}{x}}{\frac{g(0+x)-g(0)}{x}}=\frac{f^{\prime}(0)}{g^{\prime}(0)}$.
4) $\lim _{x \rightarrow 0} \frac{(x+a) f(a)-a f(x+a)}{x}=\lim _{x \rightarrow 0} \frac{x f(a)-a(f(x+a)-f(a))}{x}=\lim _{x \rightarrow 0}\left(f(a)-a \frac{f(x+a)-f(a)}{x}\right)=$ $f(a)-a \lim _{x \rightarrow 0} \frac{f(x+a)-f(a)}{x}=f(a)-a f^{\prime}(a)$.
5) We need to prove that if $f(-x)=f(x)$ then $f^{\prime}(-x)=-f^{\prime}(x)$ We use the definition of the derivative. $f^{\prime}(-x)=\lim _{h \rightarrow 0} \frac{f(-x+h)-f(-x)}{h}=\lim _{h \rightarrow 0} \frac{f(x-h)-f(x)}{h}$. Here we used the fact that $f(x)$ is even, and hence $f(-x+h)=f(x-h)$ and $f(-x)=f(x)$. Next we define $t=-h$. Clearly if $h \rightarrow 0$ then $t \rightarrow 0$. Therefore we get $f^{\prime}(-x)=\lim _{h \rightarrow 0} \frac{f(x-h)-f(x)}{h}=$ $\lim _{t \rightarrow 0} \frac{f(x+t)-f(x)}{-t}=-\lim _{t \rightarrow 0} \frac{f(x+t)-f(x)}{t}=-f^{\prime}(x)$.
Remark: This exercise is easier to solve if you know how to differentiate composition of functions.
6) a) $y^{\prime}=15 x^{2}-3 x^{2}$.
b) $y^{\prime}=\left(x^{2}+1\right)^{\prime}\left(x^{5}-3\right)+\left(x^{2}+1\right)\left(x^{5}-3\right)^{\prime}=2 x\left(x^{5}+1\right)+5 x^{4}\left(x^{2}+1\right)=7 x^{6}+5 x^{4}-6 x$.
c) Write $y=(\sqrt{x}+1)\left(\frac{1}{\sqrt{x}}-1\right)=1-\sqrt{x}+\frac{1}{\sqrt{x}}-1=x^{\frac{1}{2}}-x^{-\frac{1}{2}}$. Hence $y^{\prime}=\frac{1}{2} x^{-\frac{1}{2}}+\frac{1}{2} x^{-\frac{3}{2}}=$ $\frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{x^{3}}}$.
d) Write $y=x^{2}-\frac{1}{x^{1 / 2}}+\frac{\sqrt[3]{x^{2}}}{3 x}=x^{2}-x^{-1 / 2}+\frac{1}{3} x^{-1 / 3}$. Then $y^{\prime}=2 x+\frac{1}{2} x^{-3 / 2}-\frac{1}{9} x^{-4 / 3}=$ $2 x+\frac{1}{2 \sqrt{x^{3}}}-\frac{1}{9 \sqrt[3]{x^{4}}}$.
e)

$$
\begin{gathered}
y^{\prime}=\frac{\left(x^{3}-2 x\right)^{\prime}\left(x^{2}+x+1\right)-\left(x^{3}-2 x\right)\left(x^{2}+x+1\right)^{\prime}}{\left(x^{2}+x+1\right)^{2}}= \\
=\frac{\left(3 x^{2}-2\right)\left(x^{2}+x+1\right)-\left(x^{3}-2 x\right)(2 x+1)}{\left(x^{2}+x+1\right)^{2}}=\frac{x^{4}+2 x^{3}+5 x^{2}-2}{\left(x^{2}+x+1\right)^{2}}
\end{gathered}
$$

f) We differentiate by the quotient rule. $y^{\prime}=\frac{0 \cdot\left(x^{2}+x+1\right)-1\left(x^{2}+x+1\right)^{\prime}}{\left(x^{2}+x+1\right)^{2}}$. Here the zero comes from the derivative of the constant function 1. Thus, $y^{\prime}=-\frac{2 x+1}{\left(x^{2}+x+1\right)^{2}}$.
g) Write $y=\frac{a}{a m+b m^{2}} x+\frac{b}{a m+b m^{2}} x^{2}$. Then $y^{\prime}=\frac{a}{a m+b m^{2}}+\frac{2 b}{a m+b m^{2}} x$.
h)

$$
y^{\prime}=\frac{(3-x)^{\prime}\left(1-x^{2}\right)\left(1-2 x^{3}\right)-\left[\left(1-x^{2}\right)\left(1-2 x^{3}\right)\right]^{\prime}(3-x)}{\left(1-x^{2}\right)^{2}\left(1-2 x^{3}\right)^{2}}=
$$

$$
\begin{gathered}
=\frac{-\left(1-x^{2}\right)\left(1-2 x^{3}\right)-\left[-2 x\left(1-2 x^{3}\right)-6 x^{2}\left(1-x^{2}\right)\right](3-x)}{\left(1-x^{2}\right)^{2}\left(1-2 x^{3}\right)^{2}}= \\
=\frac{8 x^{5}-30 x^{4}-4 x^{3}+17 x^{2}+6 x-1}{\left(1-x^{2}\right)^{2}\left(1-2 x^{3}\right)^{2}}
\end{gathered}
$$

7) If $f(x)=x+\frac{1}{x}$ then $f^{\prime}(x)=1-\frac{1}{x^{2}}$. Hence $f(5)=\frac{26}{5}$ and $f^{\prime}(5)=1-\frac{1}{25}=\frac{24}{25}$. Also $-\frac{1}{f^{\prime}(5)}=-\frac{25}{24}$. Hence, the equation of the tangent line at $x_{0}=5$ is $y-\frac{26}{5}=\frac{24}{25}(x-5)$ and the equation of the normal line is $y-\frac{26}{5}=-\frac{25}{24}(x-5)$.
8) Since the tangent line to $f(x)=(x-1)^{3}$ and the line $y=x$ are parallel, they have the same slope. Hence $f^{\prime}(x)=1$, or $3(x-1)^{2}=1$. Therefore we get two possible solutions $x_{1}=1+\frac{1}{\sqrt{3}}$ and $x_{2}=1-\frac{1}{\sqrt{3}}$. For these values of x we have $f\left(x_{1}\right)=\frac{1}{3 \sqrt{3}}$ and $f\left(x_{2}\right)=-\frac{1}{3 \sqrt{3}}$. Thus, the two points are $\left(1+\frac{1}{\sqrt{3}}, \frac{1}{3 \sqrt{3}}\right)$ and $\left(1-\frac{1}{\sqrt{3}},-\frac{1}{3 \sqrt{3}}\right)$.
9) Since the tangent to $f(x)=\frac{1}{x}$ is perpendicular to $y=x$ we get the equation $-\frac{1}{f^{\prime}(x)}=1$, or $-\frac{1}{\frac{-1}{x^{2}}}=1$, or $x^{2}=1$. Hence we get the solutions $x_{1}=1$ and $x_{2}=-1$. Thus, the two points are $(1,1)$ and $(-1,-1)$.
10) First, it is given that the point $(1,3)$ is on $f(x)=A x^{2}+B x+C$. Hence $3=A+B+C$. Second, it is given that $y=8-4 x$ is the tangent line to $f(x)$ at the point $(2,0)$. This tells us two things. First, that the point $(2,0)$ is on $f(x)$. Hence $0=4 A+2 B+C$. Second, we have $f^{\prime}(2)=-4$, or $4 A+B=-4$. We got three equations: $A+B+C=3 ; 4 A+2 B+C=$ $0 ; 4 A+B=-4$. Solving this system we get $A=-1, B=0$ and $C=4$. Thus the equation of the parabola is $y=-x^{2}+4$.
11) $F^{\prime}(x)=1 \cdot(x-2)(x-3)+(x-1) \cdot 1 \cdot(x-3)+(x-1)(x-2) \cdot 1$. When we plug $x=1$ the last two terms are zero, and so $F^{\prime}(1)=(1-2)(1-3)=2$.
12) $y^{\prime}=\frac{1}{2 \sqrt{x}}(1+\sqrt{2 x})(1+\sqrt{3 x})+\frac{2}{2 \sqrt{2 x}}(1+\sqrt{x})(1+\sqrt{3 x})+\frac{3}{2 \sqrt{3 x}}(1+\sqrt{x})(1+\sqrt{2 x})$.
13) $g^{\prime}(x)=\frac{(-1) \cdot(1+x)-(a-x) \cdot 1}{(1+x)^{2}}=-\frac{(1+a)}{(1+x)^{2}}$. Hence $g^{\prime}(1)=-\frac{1+a}{4}$.
14) Since the two functions should have the same tangent, the slope of this tangent should be equal. Hence, we are looking for a point x where the derivative at that point of the two function will be equal. Thus we have the equation $2 x=4 x+2 a$, or $x=-a$. If the point which the tangent line is tangent to the two functions is $\left(a, y_{0}\right)$, then we must have $y_{0}=a^{2}-2$ and $y_{0}=2 a^{2}-2 a^{2}+b$. Thus we get $a^{2}-2=b$ or $b=a^{2}-2$. This means that for any fix value of a, the two functions will have the same tangent at the point ($a, a^{2}-2$).
15) Plugging $x=0$ in the inequality $|f(x)| \leq x^{2}$ we get $f(0)=0$. Also, the above inequality is equivalent to $-x^{2} \leq f(x) \leq x^{2}$. For all $x \neq 0$ we have $-x \leq \frac{f(x)}{x} \leq x$. Since $\lim _{x \rightarrow 0} x=\lim _{x \rightarrow 0}(-x)=0$, it follows from the Sandwich Theorem that $\lim _{x \rightarrow 0} \frac{f(x)}{x}=0$. We have $f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{f(h)}{h}=0$ where the first equality follows from the fact that $f(0)=0$ and the second is the same limit we computed above it.
16) Since $g(x)$ is continuous at $x=0$ it is defined there, and hence $f(0)=0 \cdot g(0)=0$. We have $f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{f(h)}{h}$ where the last equality follows from the fact that $f(0)=0$. Moreover, $\lim _{h \rightarrow 0} \frac{f(h)}{h}=\lim _{h \rightarrow 0} \frac{h g(h)}{h}=\lim _{h \rightarrow 0} g(h)=g(0)$, where the last equality follows from the fact that $g(x)$ is continuous at zero. Hence $f^{\prime}(0)$ exists and is equal to $g(0)$.
