Calculus A for Economics

Solutions to Exercise Number 6

1) a)

$$f'(-1) = \lim_{h \to 0} \frac{f(-1+h) - f(-1)}{h} = \lim_{h \to 0} \frac{(3(-1+h) + 5) - (3(-1) + 5)}{h} = \lim_{h \to 0} \frac{3h}{h} = 3$$

b)

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{(x_0 + h - 1)^2 - (x_0 - 1)^2}{h} =$$
$$= \lim_{h \to 0} \frac{h(2x_0 - 2 + h)}{h} = 2(x_0 - 1)$$

c)

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{\frac{1}{\sqrt{x_0 + h - 1}} - \frac{1}{\sqrt{x_0 - 1}}}{h} = \lim_{h \to 0} \frac{\sqrt{x_0 - 1} - \sqrt{x_0 + h - 1}}{h\sqrt{x_0 - 1}\sqrt{x_0 + h - 1}} =$$
$$= \lim_{h \to 0} \frac{(\sqrt{x_0 - 1} - \sqrt{x_0 + h - 1})(\sqrt{x_0 - 1} + \sqrt{x_0 + h - 1})}{h(\sqrt{x_0 - 1}\sqrt{x_0 + h - 1})(\sqrt{x_0 - 1} + \sqrt{x_0 + h - 1})} =$$
$$= \lim_{h \to 0} \frac{x_0 - 1 - x_0 - h + 1}{h(\sqrt{x_0 - 1}\sqrt{x_0 + h - 1})(\sqrt{x_0 - 1} + \sqrt{x_0 + h - 1})} =$$
$$= \lim_{h \to 0} \frac{-1}{(\sqrt{x_0 - 1}\sqrt{x_0 + h - 1})(\sqrt{x_0 - 1} + \sqrt{x_0 + h - 1})} = -\frac{1}{2(x - 1)\sqrt{x - 1}} = -\frac{1}{\sqrt[3]{(x - 1)^2}}$$

2) a) We have

$$f(x) = |2x - 5| = \begin{cases} 2x - 5, & x \ge \frac{5}{2} \\ -(2x - 5), & x < \frac{5}{2} \end{cases}$$

It is clear that f(x) is differentiable for all $x \neq \frac{5}{2}$. To check $x = \frac{5}{2}$ we compute the two one side derivatives. First $\lim_{h\to 0^+} \frac{f(\frac{5}{2}+h)-f(\frac{5}{2})}{h} = \lim_{h\to 0^+} \frac{2h-0}{h} = 2$ where the first equality follows from the fact that when h > 0 then $\frac{5}{2}+h > \frac{5}{2}$ and hence $f(\frac{5}{2}+h) = 2(\frac{5}{2}+h)-5 = 2h$. Similarly, $\lim_{h\to 0^-} \frac{f(\frac{5}{2}+h)-f(\frac{5}{2})}{h} = \lim_{h\to 0^-} \frac{-2h-0}{h} = -2$. From this we deduce that the two side derivatives are not equal and hence f(x) is not differentiable at $x = \frac{5}{2}$. **b**) The function f(x) is defined for all $x \ge -1$. When x > -1, we have $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h+1} - \sqrt{x+1}}{h} = \lim_{h \to 0} \frac{(\sqrt{x+h+1} - \sqrt{x+1})(\sqrt{x+h+1} + \sqrt{x+1})}{h(\sqrt{x+h+1} + \sqrt{x+1})} = \lim_{h \to 0} \frac{1}{\sqrt{x+h+1} + \sqrt{x+1}} = \frac{1}{2\sqrt{x+1}}.$ At the point x = -1 we can check if f(x) is differentiable from the right. To do that we compute $\lim_{h \to 0^+} \frac{f(x+h) - f(h)}{h} = \lim_{h \to 0^+} \frac{\sqrt{h} - 0}{h} = \lim_{h \to 0^+} \frac{1}{\sqrt{h}}$ and this limit does not exists. Thus f(x) is not differentiable from the right at x = -1.

3) We have $\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{f(x)-f(0)}{g(x)-g(0)}$. This follows from the fact that f(0) = g(0) = 0. Hence, multiplying and dividing by $\frac{1}{x}$, when $x \neq 0$, we get $\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{\frac{f(0+x)-f(0)}{x}}{\frac{g(0+x)-g(0)}{x}} = \frac{f'(0)}{g'(0)}$.

4)
$$\lim_{x \to 0} \frac{(x+a)f(a) - af(x+a)}{x} = \lim_{x \to 0} \frac{xf(a) - a(f(x+a) - f(a))}{x} = \lim_{x \to 0} \left(f(a) - a\frac{f(x+a) - f(a)}{x} \right) = f(a) - a\lim_{x \to 0} \frac{f(x+a) - f(a)}{x} = f(a) - af'(a).$$

5) We need to prove that if f(-x) = f(x) then f'(-x) = -f'(x) We use the definition of the derivative. $f'(-x) = \lim_{h \to 0} \frac{f(-x+h)-f(-x)}{h} = \lim_{h \to 0} \frac{f(x-h)-f(x)}{h}$. Here we used the fact that f(x) is even, and hence f(-x+h) = f(x-h) and f(-x) = f(x). Next we define t = -h. Clearly if $h \to 0$ then $t \to 0$. Therefore we get $f'(-x) = \lim_{h \to 0} \frac{f(x-h)-f(x)}{h} = \lim_{t \to 0} \frac{f(x+t)-f(x)}{t} = -\lim_{t \to 0} \frac{f(x+t)-f(x)}{t} = -f'(x)$.

Remark: This exercise is easier to solve if you know how to differentiate composition of functions.

6) a)
$$y' = 15x^2 - 3x^2$$
.
b) $y' = (x^2 + 1)'(x^5 - 3) + (x^2 + 1)(x^5 - 3)' = 2x(x^5 + 1) + 5x^4(x^2 + 1) = 7x^6 + 5x^4 - 6x$.
c) Write $y = (\sqrt{x} + 1)(\frac{1}{\sqrt{x}} - 1) = 1 - \sqrt{x} + \frac{1}{\sqrt{x}} - 1 = x^{\frac{1}{2}} - x^{-\frac{1}{2}}$. Hence $y' = \frac{1}{2}x^{-\frac{1}{2}} + \frac{1}{2}x^{-\frac{3}{2}} = \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{x^3}}$.
d) Write $y = x^2 - \frac{1}{x^{1/2}} + \frac{\sqrt[3]{x^2}}{3x} = x^2 - x^{-1/2} + \frac{1}{3}x^{-1/3}$. Then $y' = 2x + \frac{1}{2}x^{-3/2} - \frac{1}{9}x^{-4/3} = 2x + \frac{1}{2\sqrt{x^3}} - \frac{1}{9\sqrt[3]{x^4}}$.
e) $y' = \frac{(x^3 - 2x)'(x^2 + x + 1) - (x^3 - 2x)(x^2 + x + 1)'}{(x^2 + x + 1)^2} = \frac{(3x^2 - 2)(x^2 + x + 1) - (x^3 - 2x)(2x + 1)}{(x^2 + x + 1)^2} = \frac{x^4 + 2x^3 + 5x^2 - 2}{(x^2 + x + 1)^2}$

f) We differentiate by the quotient rule. $y' = \frac{0 \cdot (x^2 + x + 1) - 1(x^2 + x + 1)'}{(x^2 + x + 1)^2}$. Here the zero comes from the derivative of the constant function 1. Thus, $y' = -\frac{2x+1}{(x^2 + x + 1)^2}$. g) Write $y = \frac{a}{am + bm^2}x + \frac{b}{am + bm^2}x^2$. Then $y' = \frac{a}{am + bm^2} + \frac{2b}{am + bm^2}x$. h) $y' = \frac{(3-x)'(1-x^2)(1-2x^3) - [(1-x^2)(1-2x^3)]'(3-x)}{(1-x^2)^2(1-2x^3)^2} =$

$$= \frac{-(1-x^2)(1-2x^3) - [-2x(1-2x^3) - 6x^2(1-x^2)](3-x)}{(1-x^2)^2(1-2x^3)^2} = \frac{8x^5 - 30x^4 - 4x^3 + 17x^2 + 6x - 1}{(1-x^2)^2(1-2x^3)^2}$$

7) If $f(x) = x + \frac{1}{x}$ then $f'(x) = 1 - \frac{1}{x^2}$. Hence $f(5) = \frac{26}{5}$ and $f'(5) = 1 - \frac{1}{25} = \frac{24}{25}$. Also $-\frac{1}{f'(5)} = -\frac{25}{24}$. Hence, the equation of the tangent line at $x_0 = 5$ is $y - \frac{26}{5} = \frac{24}{25}(x-5)$ and the equation of the normal line is $y - \frac{26}{5} = -\frac{25}{24}(x-5)$.

8) Since the tangent line to $f(x) = (x-1)^3$ and the line y = x are parallel, they have the same slope. Hence f'(x) = 1, or $3(x-1)^2 = 1$. Therefore we get two possible solutions $x_1 = 1 + \frac{1}{\sqrt{3}}$ and $x_2 = 1 - \frac{1}{\sqrt{3}}$. For these values of x we have $f(x_1) = \frac{1}{3\sqrt{3}}$ and $f(x_2) = -\frac{1}{3\sqrt{3}}$. Thus, the two points are $(1 + \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}})$ and $(1 - \frac{1}{\sqrt{3}}, -\frac{1}{3\sqrt{3}})$.

9) Since the tangent to $f(x) = \frac{1}{x}$ is perpendicular to y = x we get the equation $-\frac{1}{f'(x)} = 1$, or $-\frac{1}{\frac{-1}{x^2}} = 1$, or $x^2 = 1$. Hence we get the solutions $x_1 = 1$ and $x_2 = -1$. Thus, the two points are (1, 1) and (-1, -1).

10) First, it is given that the point (1,3) is on $f(x) = Ax^2 + Bx + C$. Hence 3 = A + B + C. Second, it is given that y = 8 - 4x is the tangent line to f(x) at the point (2,0). This tells us two things. First, that the point (2,0) is on f(x). Hence 0 = 4A + 2B + C. Second, we have f'(2) = -4, or 4A + B = -4. We got three equations: A + B + C = 3; 4A + 2B + C =0; 4A + B = -4. Solving this system we get A = -1, B = 0 and C = 4. Thus the equation of the parabola is $y = -x^2 + 4$.

11) $F'(x) = 1 \cdot (x-2)(x-3) + (x-1) \cdot 1 \cdot (x-3) + (x-1)(x-2) \cdot 1$. When we plug x = 1 the last two terms are zero, and so F'(1) = (1-2)(1-3) = 2.

12)
$$y' = \frac{1}{2\sqrt{x}}(1+\sqrt{2x})(1+\sqrt{3x}) + \frac{2}{2\sqrt{2x}}(1+\sqrt{x})(1+\sqrt{3x}) + \frac{3}{2\sqrt{3x}}(1+\sqrt{x})(1+\sqrt{2x}).$$

13) $g'(x) = \frac{(-1)\cdot(1+x)-(a-x)\cdot 1}{(1+x)^2} = -\frac{(1+a)}{(1+x)^2}.$ Hence $g'(1) = -\frac{1+a}{4}.$

14) Since the two functions should have the same tangent, the slope of this tangent should be equal. Hence, we are looking for a point x where the derivative at that point of the two function will be equal. Thus we have the equation 2x = 4x + 2a, or x = -a. If the point which the tangent line is tangent to the two functions is (a, y_0) , then we must have $y_0 = a^2 - 2$ and $y_0 = 2a^2 - 2a^2 + b$. Thus we get $a^2 - 2 = b$ or $b = a^2 - 2$. This means that for any fix value of a, the two functions will have the same tangent at the point $(a, a^2 - 2)$.

15) Plugging x = 0 in the inequality $|f(x)| \le x^2$ we get f(0) = 0. Also, the above inequality is equivalent to $-x^2 \le f(x) \le x^2$. For all $x \ne 0$ we have $-x \le \frac{f(x)}{x} \le x$. Since $\lim_{x\to 0} x = \lim_{x\to 0} (-x) = 0$, it follows from the Sandwich Theorem that $\lim_{x\to 0} \frac{f(x)}{x} = 0$. We have $f'(0) = \lim_{h\to 0} \frac{f(0+h)-f(0)}{h} = \lim_{h\to 0} \frac{f(h)}{h} = 0$ where the first equality follows from the fact that f(0) = 0 and the second is the same limit we computed above it.

16) Since g(x) is continuous at x = 0 it is defined there, and hence $f(0) = 0 \cdot g(0) = 0$. We have $f'(0) = \lim_{h\to 0} \frac{f(0+h)-f(0)}{h} = \lim_{h\to 0} \frac{f(h)}{h}$ where the last equality follows from the fact that f(0) = 0. Moreover, $\lim_{h\to 0} \frac{f(h)}{h} = \lim_{h\to 0} \frac{hg(h)}{h} = \lim_{h\to 0} g(h) = g(0)$, where the last equality follows from the fact that g(x) is continuous at zero. Hence f'(0) exists and is equal to g(0).